Jackknife inference with two-way clustering

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: James G MacKinnon, Morten Ørregaard Nielsen, Matthew D Webb

Ngôn ngữ: eng

Ký hiệu phân loại: 523.85 Clusters

Thông tin xuất bản: 2024

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 203015

For linear regression models with cross-section or panel data, it is natural to assume that the disturbances are clustered in two dimensions. However, the finite-sample properties of two-way cluster-robust tests and confidence intervals are often poor. We discuss several ways to improve inference with two-way clustering. Two of these are existing methods for avoiding, or at least ameliorating, the problem of undefined standard errors when a cluster-robust variance matrix estimator (CRVE) is not positive definite. One is a new method that always avoids the problem. More importantly, we propose a family of new two-way CRVEs based on the cluster jackknife. Simulations for models with two-way fixed effects suggest that, in many cases, the cluster-jackknife CRVE combined with our new method yields surprisingly accurate inferences. We provide a simple software package, twowayjack for Stata, that implements our recommended variance estimator.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH