Bayesian Inference for Multidimensional Welfare Comparisons

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Duangkamon Chotikapanich, William Griffiths, David Gunawan

Ngôn ngữ: eng

Ký hiệu phân loại: 330.1556 Systems, schools, theories

Thông tin xuất bản: 2024

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 203081

Using both single-index measures and stochastic dominance concepts, we show how Bayesian inference can be used to make multivariate welfare comparisons. A four-dimensional distribution for the well-being attributes income, mental health, education, and happiness are estimated via Bayesian Markov chain Monte Carlo using unit-record data taken from the Household, Income and Labour Dynamics in Australia survey. Marginal distributions of beta and gamma mixtures and discrete ordinal distributions are combined using a copula. Improvements in both well-being generally and poverty magnitude are assessed using posterior means of single-index measures and posterior probabilities of stochastic dominance. The conditions for stochastic dominance depend on the class of utility functions that is assumed to define a social welfare function and the number of attributes in the utility function. Three classes of utility functions are considered, and posterior probabilities of dominance are computed for one, two, and four-attribute utility functions for three time intervals within the period 2001 to 2019.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH