The synthesis of inorganic compounds embraces an immense range of techniques and approaches. New organometallic molecules, for example, might demand multi-step organic reactions in the successful production of ligands followed by precision handling and manipulation to form the desired complexes under anaerobic conditions. By contrast, preparation of solid state compounds can demand extreme conditions of temperature and pressure to overcome the formidable thermodynamic and kinetic barriers to their formation. It is the target of many inorganic chemists, both by experiment and computation, to prepare or predict new compounds and materials, to discover the most appropriate conditions under which such substances can be made and to design the experiments that will realise them. New inorganic compounds remain attractive, for example, for their inherent complexity and beauty, for their chemical behaviour, their chemical or biological activity or for their physical properties. The need and desire for new compounds often demands increasingly sophisticated and imaginative synthesis strategies. Equally, the modern societal pressures of cost, safety and environmental protection require new attitudes to the synthesis of high value chemical products. Time and energy efficiency, use of earth-abundant resources and many other green chemistry principles become key parameters in the design of new synthetic processes. I would like to dedicate this inaugural issue of "Inorganics" therefore, to the concept of "innovative synthesis" - from the intricacy of constructing extended molecular solids on the basis of weak supramolecular forces through the appealing simplicity of "one-pot" methods to make cluster and hybrid materials and soft chemical means to produce solid state materials to the adaptation of inefficient lab techniques towards streamlined flow processes for the preparation of fine chemicals.