Reducing False Discoveries in Statistically-Significant Regional-Colocation Mining: A Summary of Results

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Shuai An, Subhankar Ghosh, Jayant Gupta, Arun Sharma, Shashi Shekhar

Ngôn ngữ: eng

Ký hiệu phân loại: 526.75 Mathematical geography

Thông tin xuất bản: 2024

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 203249

 Given a set \emph{S} of spatial feature types, its feature instances, a study area, and a neighbor relationship, the goal is to find pairs $<
 $a region ($r_{g}$), a subset \emph{C} of \emph{S}$>
 $ such that \emph{C} is a statistically significant regional-colocation pattern in $r_{g}$. This problem is important for applications in various domains including ecology, economics, and sociology. The problem is computationally challenging due to the exponential number of regional colocation patterns and candidate regions. Previously, we proposed a miner \cite{10.1145/3557989.3566158} that finds statistically significant regional colocation patterns. However, the numerous simultaneous statistical inferences raise the risk of false discoveries (also known as the multiple comparisons problem) and carry a high computational cost. We propose a novel algorithm, namely, multiple comparisons regional colocation miner (MultComp-RCM) which uses a Bonferroni correction. Theoretical analysis, experimental evaluation, and case study results show that the proposed method reduces both the false discovery rate and computational cost.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH