Regularizing stock return covariance matrices via multiple testing of correlations

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Richard Luger

Ngôn ngữ: eng

Ký hiệu phân loại: 521.36 Celestial mechanics

Thông tin xuất bản: 2024

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 203340

This paper develops a large-scale inference approach for the regularization of stock return covariance matrices. The framework allows for the presence of heavy tails and multivariate GARCH-type effects of unknown form among the stock returns. The approach involves simultaneous testing of all pairwise correlations, followed by setting non-statistically significant elements to zero. This adaptive thresholding is achieved through sign-based Monte Carlo resampling within multiple testing procedures, controlling either the traditional familywise error rate, a generalized familywise error rate, or the false discovery proportion. Subsequent shrinkage ensures that the final covariance matrix estimate is positive definite and well-conditioned while preserving the achieved sparsity. Compared to alternative estimators, this new regularization method demonstrates strong performance in simulation experiments and real portfolio optimization.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH