On the power properties of inference for parameters with interval identified sets

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Federico A Bugni, Mengsi Gao, Filip Obradovic, Amilcar Velez

Ngôn ngữ: eng

Ký hiệu phân loại: 111.6 Finite and infinite

Thông tin xuất bản: 2024

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 203596

Comment: 37 pagesThis paper studies the power properties of confidence intervals (CIs) for a partially-identified parameter of interest with an interval identified set. We assume the researcher has bounds estimators to construct the CIs proposed by Stoye (2009), referred to as CI1, CI2, and CI3. We also assume that these estimators are "ordered": the lower bound estimator is less than or equal to the upper bound estimator. Under these conditions, we establish two results. First, we show that CI1 and CI2 are equally powerful, and both dominate CI3. Second, we consider a favorable situation in which there are two possible bounds estimators to construct these CIs, and one is more efficient than the other. One would expect that the more efficient bounds estimator yields more powerful inference. We prove that this desirable result holds for CI1 and CI2, but not necessarily for CI3.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH