Double nanowire quantum dots and machine learning.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Michał Zieliński

Ngôn ngữ: eng

Ký hiệu phân loại: 331.7 Labor by industry and occupation

Thông tin xuất bản: England : Scientific reports , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 203808

We present an approach to estimate the single-particle energies in double InAs/InP nanowire quantum dots by combining an atomistic tight-binding approach with machine learning. The method works particularly well with a neural network and transfer learning, where we can accurately recover ground state energies with root-mean-square deviation around 1 meV by using only a small training set and capitalizing on earlier, smaller-scale computations. The training set is only a fraction of the multidimensional search space of possible dot sizes and inter-dot spacings. Besides the cases presented in this work, we expect this technique will interest other researchers involved in solving the inverse computational problem of matching spectra to nanostructure morphological properties.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH