Identification of digital twins to guide interpretable AI for diagnosis and prognosis in heart failure.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Daniel A Beard, Brian E Carlson, Tonimarie Catalan, Feng Gu, Xinwei Hua, Scott L Hummel, Filip Ježek, Rui Li, Andrew J Meyer, Alexandria Miller, Kayvan Najarian, Farhan Raza, Noah A Schenk, Victoria E Sturgess, Yi-Da Tang, Domingo Uceda, Emily Wittrup, Shuangdi Zhang

Ngôn ngữ: eng

Ký hiệu phân loại: 629.2273 Motor land vehicles, cycles

Thông tin xuất bản: England : NPJ digital medicine , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 204067

Heart failure (HF) is a highly heterogeneous condition, and current methods struggle to synthesize extensive clinical data for personalized care. Using data from 343 HF patients, we developed mechanistic computational models of the cardiovascular system to create digital twins. These twins, consisting of optimized measurable and unmeasurable parameters alongside simulations of cardiovascular function, provided comprehensive representations of individual disease states. Unsupervised machine learning applied to digital twin-derived features identified interpretable phenogroups and mechanistic drivers of cardiovascular death risk. Incorporating these features into prognostic AI models improved performance, transferability, and interpretability compared to models using only clinical variables. This framework demonstrates potential to enhance prognosis and guide therapy, paving the way for more precise, individualized HF management.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH