Dynamic tail risk forecasting: what do realized skewness and kurtosis add?

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Giampiero Gallo, Ostap Okhrin, Giuseppe Storti

Ngôn ngữ: eng

Ký hiệu phân loại: 003.76 Stochastic systems

Thông tin xuất bản: 2024

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 204240

This paper compares the accuracy of tail risk forecasts with a focus on including realized skewness and kurtosis in "additive" and "multiplicative" models. Utilizing a panel of 960 US stocks, we conduct diagnostic tests, employ scoring functions, and implement rolling window forecasting to evaluate the performance of Value at Risk (VaR) and Expected Shortfall (ES) forecasts. Additionally, we examine the impact of the window length on forecast accuracy. We propose model specifications that incorporate realized skewness and kurtosis for enhanced precision. Our findings provide insights into the importance of considering skewness and kurtosis in tail risk modeling, contributing to the existing literature and offering practical implications for risk practitioners and researchers.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH