AI Persuasion, Bayesian Attribution, and Career Concerns of Doctors

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Hanzhe Li, Jin Li, Ye Luo, Xiaowei Zhang

Ngôn ngữ: eng

Ký hiệu phân loại: 610.88 Medicine and health

Thông tin xuất bản: 2024

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 204390

This paper examines how AI persuades doctors when their diagnoses differ. Disagreements arise from two sources: attention differences, which are objective and play a complementary role to the doctor, and comprehension differences, which are subjective and act as substitutes. AI's interpretability influences how doctors attribute these sources and their willingness to change their minds. Surprisingly, uninterpretable AI can be more persuasive by allowing doctors to partially attribute disagreements to attention differences. This effect is stronger when doctors have low abnormality detection skills. Additionally, uninterpretable AI can improve diagnostic accuracy when doctors have career concerns.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH