Reproducing and Extending Experiments in Behavioral Strategy with Large Language Models

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Daniel Albert, Stephan Billinger

Ngôn ngữ: eng

Ký hiệu phân loại: 006.4 Computer pattern recognition

Thông tin xuất bản: 2024

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 204453

In this study, we propose LLM agents as a novel approach in behavioral strategy research, complementing simulations and laboratory experiments to advance our understanding of cognitive processes in decision-making. Specifically, we reproduce a human laboratory experiment in behavioral strategy using large language model (LLM) generated agents and investigate how LLM agents compare to observed human behavior. Our results show that LLM agents effectively reproduce search behavior and decision-making comparable to humans. Extending our experiment, we analyze LLM agents' simulated "thoughts," discovering that more forward-looking thoughts correlate with favoring exploitation over exploration to maximize wealth. We show how this new approach can be leveraged in behavioral strategy research and address limitations.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH