Partially Identified Rankings from Pairwise Interactions

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Federico Crippa, Danil Fedchenko

Ngôn ngữ: eng

Ký hiệu phân loại: 155.927 Differential and developmental psychology

Thông tin xuất bản: 2024

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 204583

This paper considers the problem of ranking objects based on their latent merits using data from pairwise interactions. Existing approaches rely on the restrictive assumption that all the interactions are either observed or missed randomly. We investigate what can be inferred about rankings when this assumption is relaxed. First, we demonstrate that in parametric models, such as the popular Bradley-Terry-Luce model, rankings are point-identified if and only if the tournament graph is connected. Second, we show that in nonparametric models based on strong stochastic transitivity, rankings in a connected tournament are only partially identified. Finally, we propose two statistical tests to determine whether a ranking belongs to the identified set. One test is valid in finite samples but computationally intensive, while the other is easy to implement and valid asymptotically. We illustrate our procedure using Brazilian employer-employee data to test whether male and female workers rank firms differently when making job transitions.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH