Generating long-horizon stock "buy" signals with a neural language model

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Joel R Bock

Ngôn ngữ: eng

Ký hiệu phân loại: 006.32 Neural nets (Neural networks)

Thông tin xuất bản: 2024

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 204591

 This paper describes experiments on fine-tuning a small language model to generate forecasts of long-horizon stock price movements. Inputs to the model are narrative text from 10-K reports of large market capitalization companies in the S&P 500 index
  the output is a forward-looking buy or sell decision. Price direction is predicted at discrete horizons up to 12 months after the report filing date. The results reported here demonstrate good out-of-sample statistical performance (F1-macro= 0.62) at medium to long investment horizons. In particular, the buy signals generated from 10-K text are found most precise at 6 and 9 months in the future. As measured by the F1 score, the buy signal provides between 4.8 and 9 percent improvement against a random stock selection model. In contrast, sell signals generated by the models do not perform well. This may be attributed to the highly imbalanced out-of-sample data, or perhaps due to management drafting annual reports with a bias toward positive language. Cross-sectional analysis of performance by economic sector suggests that idiosyncratic reporting styles within industries are correlated with varying degrees and time scales of price movement predictability.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH