An Adversarial Approach to Identification

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Irene Botosaru, Isaac Loh, Chris Muris

Ngôn ngữ: eng

Ký hiệu phân loại: 003.1 System identification

Thông tin xuất bản: 2024

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 204819

We introduce a new framework for characterizing identified sets of structural and counterfactual parameters in econometric models. By reformulating the identification problem as a set membership question, we leverage the separating hyperplane theorem in the space of observed probability measures to characterize the identified set through the zeros of a discrepancy function with an adversarial game interpretation. The set can be a singleton, resulting in point identification. A feature of many econometric models, with or without distributional assumptions on the error terms, is that the probability measure of observed variables can be expressed as a linear transformation of the probability measure of latent variables. This structure provides a unifying framework and facilitates computation and inference via linear programming. We demonstrate the versatility of our approach by applying it to nonlinear panel models with fixed effects, with parametric and nonparametric error distributions, and across various exogeneity restrictions, including strict and sequential.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH