Equilibrium Cycle: A "Dynamic" Equilibrium

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Veeraruna Kavitha, Jayakrishnan Nair, Shiksha Singhal, Tushar Shankar Walunj

Ngôn ngữ: eng

Ký hiệu phân loại: 526.12 Mathematical geography

Thông tin xuất bản: 2024

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 204931

In this paper, we introduce a novel equilibrium concept, called the equilibrium cycle, which seeks to capture the outcome of oscillatory game dynamics. Unlike the (pure) Nash equilibrium, which defines a fixed point of mutual best responses, an equilibrium cycle is a set-valued solution concept that can be demonstrated even in games where best responses do not exist (for example, in discontinuous games). The equilibrium cycle identifies a Cartesian product set of action profiles that satisfies three important properties: stability against external deviations, instability against internal deviations, and minimality. This set-valued equilibrium concept generalizes the classical notion of the minimal curb set to discontinuous games. In finite games, the equilibrium cycle is related to strongly connected sink components of the best response graph.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH