Evaluation of suitable reference genes for gene expression studies in the developing mouse cortex using RT-qPCR.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Lena H Nguyen, Ananya Uppalapati, Timothy Wang

Ngôn ngữ: eng

Ký hiệu phân loại: 594.38 *Pulmonata

Thông tin xuất bản: England : BMC neuroscience , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 205031

BACKGROUND: Real-time quantitative PCR (RT-qPCR) is a widely used method to investigate gene expression in neuroscience studies. Accurate relative quantification of RT-qPCR requires the selection of reference genes that are stably expressed across the experimental conditions and tissues of interest. While RT-qPCR is often performed to investigate gene expression changes during neurodevelopment, few studies have examined the expression stability of commonly used reference genes in the developing mouse cortex. RESULTS: Here, we evaluated the stability of five housekeeping genes, Actb, Gapdh, B2m, Rpl13a, and Hprt, in cortical tissue from mice at embryonic day 15 to postnatal day 0 to identify optimal reference genes with stable expression during late corticogenesis. The expression stability was assessed using five computational algorithms: BestKeeper, geNorm, NormFinder, DeltaCt, and RefFinder. Our results showed that B2m, Gapdh, and Hprt, or a combination of B2m/Gapdh and B2m/Hprt, were the most stably expressed genes or gene pairs. In contrast, Actb and Rpl13a were the least stably expressed. CONCLUSION: This study identifies B2m, Gapdh, and Hprt as suitable reference genes for relative quantification in RT-qPCR-based cortical development studies spanning the period of embryonic day 15 to postnatal day 0.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH