Segmentation methods and dosimetric evaluation of 3D-printed immobilization devices in head and neck radiotherapy.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Xiangxiang Liu, Ming Wang, Yunpeng Yin, Luxin Yu, Weisha Zhang, Lian Zou

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : BMC cancer , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 205094

BACKGROUND: Treatment planning systems (TPS) often exclude immobilization devices from optimization and calculation, potentially leading to inaccurate dose estimates. This study employed deep learning methods to automatically segment 3D-printed head and neck immobilization devices and evaluate their dosimetric impact in head and neck VMAT. METHODS: Computed tomography (CT) positioning images from 49 patients were used to train the Mask2Former model to segment 3D-printed headrests and MFIFs. Based on the results, four body structure sets were generated for each patient to evaluate the impact on dose distribution in volumetric modulated arc therapy (VMAT) plans: S (without immobilization devices), S RESULTS: The Mask2Former model achieved a mean average precision (mAP) of 0.898 and 0.895, with a Dice index of 0.956 and 0.939 for the 3D-printed headrest on the validation and test sets, respectively. For the MFIF, the Dice index was 0.980 and 0.981 on the validation and test sets, respectively. Compared to P, P CONCLUSIONS: This study highlights the potential of Mask2Former in 3D-printed headrest and MFIF segmentation automation, providing a novel approach to enhance personalized radiation therapy plan accuracy. The attenuation effects of 3D-printed headrests and MFIFs reduce V
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH