Impact of glucose and propionic acid on even and odd chain fatty acid profiles of oleaginous yeasts.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Veronica Bonzanini, Cecilia Geijer, Majid Haddad Momeni, Kim Olofsson, Lisbeth Olsson

Ngôn ngữ: eng

Ký hiệu phân loại: 627.12 Rivers and streams

Thông tin xuất bản: England : BMC microbiology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 205130

BACKGROUND: Odd chain fatty acids (OCFAs) are gaining attention for their valuable medical and nutritional applications. Microbial fermentation offers a sustainable and environmentally friendly alternative for OCFA production compared to traditional extraction or chemical synthesis methods. To achieve an economically feasible OCFA production process, it is essential to identify and develop microbial cell factories capable of producing OCFAs with high titers and yields. RESULTS: We selected 19 yeast species, including both oleaginous yeasts and representatives from the Ascomycota and Basidiomycota phyla, based on their known or potential ability to produce OCFAs. These species were screened under various growth conditions to evaluate their OCFA production potential. In glucose-based, nitrogen-limited media, the strains produced fatty acids to varying extents, with OCFAs comprising 0.5-5% of the total fatty acids. When using the OCFAs precursor propionic acid as the sole carbon source, only eight strains exhibited growth, with tolerance to propionic acid concentrations between 5 and 29 g/L. The strains also displayed varying efficiencies in converting propionic acid into fatty acids, yielding between 0.16 and 1.22 g/L of fatty acids, with OCFAs constituting 37-89% of total fatty acids. Among the top performing strains, Cutaneotrichosporon oleaginosus produced the highest OCFA titers and yields (0.94 g/L, 0.07 g/g), Yarrowia lipolytica demonstrated superior growth rates even at elevated propionic acid concentrations, and Rhodotorula toruloides achieved the highest proportion of OCFAs relative to total fatty acids (89%). CONCLUSIONS: Our findings highlight the diverse capacities of the selected yeast species for OCFA production, identifying several promising strains for further optimization as microbial cell factories in sustainable OCFA production processes.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH