Cubic-based Prediction Approach for Large Volatility Matrix using High-Frequency Financial Data

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Sung Hoon Choi, Donggyu Kim

Ngôn ngữ: eng

Ký hiệu phân loại: 003.76 Stochastic systems

Thông tin xuất bản: 2024

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 205187

In this paper, we develop a novel method for predicting future large volatility matrices based on high-dimensional factor-based It\^o processes. Several studies have proposed volatility matrix prediction methods using parametric models to account for volatility dynamics. However, these methods often impose restrictions, such as constant eigenvectors over time. To generalize the factor structure, we construct a cubic (order-3 tensor) form of an integrated volatility matrix process, which can be decomposed into low-rank tensor and idiosyncratic tensor components. To predict conditional expected large volatility matrices, we introduce the Projected Tensor Principal Orthogonal componEnt Thresholding (PT-POET) procedure and establish its asymptotic properties. Finally, the advantages of PT-POET are also verified by a simulation study and illustrated by applying minimum variance portfolio allocation using high-frequency trading data.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH