Convolution Mode Regression

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Eduardo Schirmer Finn, Eduardo Horta

Ngôn ngữ: eng

Ký hiệu phân loại: 612.8255 Nervous system Sensory functions

Thông tin xuất bản: 2024

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 205217

For highly skewed or fat-tailed distributions, mean or median-based methods often fail to capture the central tendencies in the data. Despite being a viable alternative, estimating the conditional mode given certain covariates (or mode regression) presents significant challenges. Nonparametric approaches suffer from the "curse of dimensionality", while semiparametric strategies often lead to non-convex optimization problems. In order to avoid these issues, we propose a novel mode regression estimator that relies on an intermediate step of inverting the conditional quantile density. In contrast to existing approaches, we employ a convolution-type smoothed variant of the quantile regression. Our estimator converges uniformly over the design points of the covariates and, unlike previous quantile-based mode regressions, is uniform with respect to the smoothing bandwidth. Additionally, the Convolution Mode Regression is dimension-free, carries no issues regarding optimization and preliminary simulations suggest the estimator is normally distributed in finite samples.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH