Probabilistic Targeted Factor Analysis

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Miguel C Herculano, Santiago Montoya-Blandón

Ngôn ngữ: eng

Ký hiệu phân loại: 515.7 Functional analysis

Thông tin xuất bản: 2024

Mô tả vật lý:

Bộ sưu tập: Metadata

ID: 205242

We develop a probabilistic variant of Partial Least Squares (PLS) we call Probabilistic Targeted Factor Analysis (PTFA), which can be used to extract common factors in predictors that are useful to predict a set of predetermined target variables. Along with the technique, we provide an efficient expectation-maximization (EM) algorithm to learn the parameters and forecast the targets of interest. We develop a number of extensions to missing-at-random data, stochastic volatility, factor dynamics, and mixed-frequency data for real-time forecasting. In a simulation exercise, we show that PTFA outperforms PLS at recovering the common underlying factors affecting both features and target variables delivering better in-sample fit, and providing valid forecasts under contamination such as measurement error or outliers. Finally, we provide three applications in Economics and Finance where PTFA outperforms compared with PLS and Principal Component Analysis (PCA) at out-of-sample forecasting.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH