Uncertainty Quantification Techniques in Statistics

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jong-Min Kim

Ngôn ngữ: eng

ISBN-13: 978-3039285464

Ký hiệu phân loại:

Thông tin xuất bản: Basel, Switzerland : MDPI - Multidisciplinary Digital Publishing Institute, 2020

Mô tả vật lý: 1 electronic resource (128 p.)

Bộ sưu tập: Tài liệu truy cập mở

ID: 205339

Uncertainty quantification (UQ) is a mainstream research topic in applied mathematics and statistics. To identify UQ problems, diverse modern techniques for large and complex data analyses have been developed in applied mathematics, computer science, and statistics. This Special Issue of Mathematics (ISSN 2227-7390) includes diverse modern data analysis methods such as skew-reflected-Gompertz information quantifiers with application to sea surface temperature records, the performance of variable selection and classification via a rank-based classifier, two-stage classification with SIS using a new filter ranking method in high throughput data, an estimation of sensitive attribute applying geometric distribution under probability proportional to size sampling, combination of ensembles of regularized regression models with resampling-based lasso feature selection in high dimensional data, robust linear trend test for low-coverage next-generation sequence data controlling for covariates, and comparing groups of decision-making units in efficiency based on semiparametric regression.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH