Uncertainty Quantification and Model Calibration

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jan Peter Hessling

Ngôn ngữ: eng

ISBN-13: 978-9535132790

Ký hiệu phân loại: 616.97 *Diseases of immune system

Thông tin xuất bản: IntechOpen, 2017

Mô tả vật lý: 1 electronic resource (226 p.)

Bộ sưu tập: Tài liệu truy cập mở

ID: 205341

Uncertainty quantification may appear daunting for practitioners due to its inherent complexity but can be intriguing and rewarding for anyone with mathematical ambitions and genuine concern for modeling quality. Uncertainty quantification is what remains to be done when too much credibility has been invested in deterministic analyses and unwarranted assumptions. Model calibration describes the inverse operation targeting optimal prediction and refers to inference of best uncertain model estimates from experimental calibration data. The limited applicability of most state-of-the-art approaches to many of the large and complex calculations made today makes uncertainty quantification and model calibration major topics open for debate, with rapidly growing interest from both science and technology, addressing subtle questions such as credible predictions of climate heating.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 71010608 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH