In recent years, the rising complexity of Internet of Things (IoT) systems has increased their potential vulnerabilities and introduced new cybersecurity challenges. In this context, state of the art methods and technologies for security risk assessment have prominent limitations when it comes to large scale, cyber-physical and interconnected IoT systems. Risk assessments for modern IoT systems must be frequent, dynamic and driven by knowledge about both cyber and physical assets. Furthermore, they should be more proactive, more automated, and able to leverage information shared across IoT value chains. This book introduces a set of novel risk assessment techniques and their role in the IoT Security risk management process. Specifically, it presents architectures and platforms for end-to-end security, including their implementation based on the edge/fog computing paradigm. It also highlights machine learning techniques that boost the automation and proactiveness of IoT security risk assessments. Furthermore, blockchain solutions for open and transparent sharing of IoT security information across the supply chain are introduced. Frameworks for privacy awareness, along with technical measures that enable privacy risk assessment and boost GDPR compliance are also presented. Likewise, the book illustrates novel solutions for security certification of IoT systems, along with techniques for IoT security interoperability. In the coming years, IoT security will be a challenging, yet very exciting journey for IoT stakeholders, including security experts, consultants, security research organizations and IoT solution providers. The book provides knowledge and insights about where we stand on this journey. It also attempts to develop a vision for the future and to help readers start their IoT Security efforts on the right foot.