Chayote pectin regulates blood glucose through the gut-liver axis: Gut microbes/SCFAs/FoxO1 signaling pathways.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Anjun Chen, Hong Chen, Qiang Cui, Qing Guo, Xiaoyan Hou, Jingxuan Ke, Shanshan Li, Hong Liu, Yuntao Liu, Qingying Luo, Guanghui Shen, Xiaoxue Wang, Jie Yu, Zhiqing Zhang

Ngôn ngữ: eng

Ký hiệu phân loại: 271.6 *Passionists and Redemptorists

Thông tin xuất bản: Canada : Food research international (Ottawa, Ont.) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 208444

Despite significant evidence on the anti-diabetic effect of chayote fruit and phenolic compounds, research on the mechanism of chayote (Sechium edule) pectin (CP) regulating blood glucose in type 2 diabetes mellitus (T2DM) is scarce. Therefore, this study aims to explore the potential mechanisms by which CP modulates blood glucose levels through an 8-week administration in db/db mice. The results showed that the CP treatment in db/db mice resulted in an elevation in glucagon-like peptide (GLP-1) secretion, an increase in hepatic glycogen storage, and a decrease in homeostasis model assessment-insulin resistance (HOMA-IR). Western blotting results showed that CP intervention significantly upregulated the expression of phosphatidylinositol 3 kinase (PI3K), phosphorylated protein kinase B (P-AKT) and downregulated the expression of fork-head transcription factor O1(FoxO1), glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK). Moreover, CP effectively upregulated the protein expression of hepatic G protein-coupled receptor 43 (GPR43) and phosphorylated adenosine 5'-monophosphate (AMP)-activated protein kinase (P-AMPK). Furthermore, CP rearranged the gut microbiota structure by increasing beneficial bacteria (unclassified_Ruminococcaceae, Muribaculaceae, Alloprevotella, Rikenella, and Parabacteroides) and reducing the Firmicutes/Bacteroidetes ratio. Additionally, CP improved the gut barrier by increasing the number and area of goblet cells and significantly upregulating the expression of Claudin-1 and Mucin-2. Overall, these findings suggest that CP regulated blood glucose by activating the gut-liver axis signaling pathway: gut microbiota/ SCFAs/ GLP-1, PI3K/AKT/FoxO1, and GPR43/AMPK/FoxO1. This study provides a scientific basis for the development and application of pectin-based functional foods.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH