As a promising material, ionogels have garnered increasing interest in various applications including flexible electronics and energy storage. However, most existing ionogels suffer from poor mechanical properties. Herein, an effective and universal strategy is reported to toughen ionogels by freezing the polymer network via network design. As a proof of concept, an ionogel is readily prepared by copolymerization of isobornyl acrylate (IBA) and ethoxyethoxyethyl acrylate (CBA) in the presence of ionic liquid, resulting in a bicontinuous phase-separated structure. The rigid, ionic liquid-free PIBA segments remain frozen at service temperature and serve as a load-bearing phase to toughen ionogels, while the flexible PCBA phases maintain high ionic liquid content. As a result, the mechanical properties of ionogels are noticeably improved, showing high rigidity (48.5 MPa), strength (4.19 MPa), and toughness (8.19 MJ · m