RAG_MCNNIL6: A Retrieval-Augmented Multi-Window Convolutional Network for Accurate Prediction of IL-6 Inducing Epitopes.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Cheng-Che Chuang, Wei-En Jhang, Yu-Chen Liu, Yu-Yen Ou, Sin-Siang Wei

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : Journal of chemical information and modeling , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 208995

Interleukin-6 (IL-6) is a critical cytokine involved in immune regulation, inflammation, and the pathogenesis of various diseases, including autoimmune disorders, cancer, and the cytokine storm associated with severe COVID-19. Identifying IL-6 inducing epitopes, the short peptide fragments that trigger IL-6 production, is crucial for developing epitope-based vaccines and immunotherapies. However, traditional methods for epitope prediction often lack accuracy and efficiency. This study presents RAG_MCNNIL6, a novel deep learning framework that integrates Retrieval-augmented generation (RAG) with multiwindow convolutional neural networks (MCNNs) for accurate and rapid prediction of IL-6 inducing epitopes. RAG_MCNNIL6 leverages ProtTrans, a state-of-the-art pretrained protein language model, to generate rich embedding representations of peptide sequences. By incorporating a RAG-based similarity retrieval and embedding augmentation strategy, RAG_MCNNIL6 effectively captures both local and global sequence patterns relevant for IL-6 induction, significantly improving prediction performance compared to existing methods. We demonstrate the superior performance of RAG_MCNNIL6 on benchmark data sets, highlighting its potential for advancing research and therapeutic development for IL-6-mediated diseases.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH