Machine learning-enhanced back muscle strength prediction considering lifting condition and individual characteristics.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jiyeon Ha, Jaejin Hwang, Jinwon Lee, Kyung-Sun Lee

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : International journal of occupational safety and ergonomics : JOSE , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 209020

This study investigated factors influencing back muscle strength, focusing on sex, forearm posture and lifting height. Lower back pain, prevalent in industries involving manual materials handling, is closely linked to back muscle strength. The study analyzed data from 98 participants using machine learning models such as linear regression, random forest and multilayer perceptron (MLP). Results showed significant effects of sex, forearm posture and lifting height on back strength. Males demonstrated higher strength than females, and a pronated forearm posture increased strength by 10% compared to supination. The MLP model achieved the highest predictive accuracy (
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH