Indium phosphide nanowires are important components in high-speed electronics and optoelectronics, including photodetectors and photovoltaics. However, most syntheses either use high-temperature and costly vapor-phase methodology or highly toxic and pyrophoric tris(trimethylsilyl)phosphine. To expand on the success of the aminophosphine-based InP colloidal quantum dot synthesis, we developed a synthesis for thin (∼11 nm) zinc blende InP nanowires at 180 °C using indium tris(trifluoroacetate) and tris(diethylamino)phosphine. A flat nanoribbon morphology was identified by transmission electron and atomic force microscopy analysis, with the stoichiometric (110) lattice plane exposed. Nanowire growth proceeded through a solution-liquid-solid mechanism from