Irreversible Deactivation Pathways in Ni(II)-Catalyzed Nonalternating Ethylene-Carbon Monoxide Copolymerization.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Stefan Mecking, Lukas Odenwald, Lukas Wursthorn

Ngôn ngữ: eng

Ký hiệu phân loại: 230.071 Education in Christianity, in Christian theology

Thông tin xuất bản: United States : Journal of the American Chemical Society , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 214017

Endowing polyethylenes with photodegradability via incorporation of low densities of in-chain keto units could reduce the problematic environmental persistency of littered polymer waste. A breakthrough enabling such materials is the recent finding of nickel catalyzed nonalternating copolymerization of ethylene-carbon monoxide. We reveal irreversible catalyst deactivation pathways operative in this reaction. Reductive elimination of the common phosphinephenolate Ni(II) motif occurs with the acyl intermediates formed upon incorporation of carbon monoxide into the growing chain, as observed by low temperature NMR spectroscopy and single crystal X-ray crystallography of the isolated product. Further, we show that such decomposition pathways are generally relevant during ethylene-carbon monoxide copolymerizations under pressure reactor conditions. These findings guide the development of more stable and productive polymerization catalysts to enable the production of environmentally benign polyethylenes.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH