This study aimed to find the most effective PGT-M strategy for Duchenne muscular dystrophy/Becker muscular dystrophy (DMD/BMD), and to reduce misdiagnosis caused by embryo recombination in DMD. A retrospective study was performed by analyzing 158 PGT-M cycles for DMD/BMD in Reproductive and Genetic Hospital of CITIC-Xiangya between 2009 and 2023. Patients' backgrounds were collected. The effectiveness and safety for five different PGT-M strategies (1-5), including mutation testing from cleavage or trophoblast ectoderm (TE) cells and additional linkage analysis post-TE cell amplification, were analyzed. The embryonic recombination events were assessed for these cycles. Mutation analysis showed that 62.4% of the 125 families had DMD deletions, 16.0% had duplications, and 21.6% had single nucleotide variants (SNVs). Among 125 families, 104 (83.2%) had previously affected fetus or offspring. The highest diagnosis rate (99.56%) was achieved with Strategy 5, which combined mutation testing with SNP-based linkage analysis in TE cells. This strategy 5 also demonstrated an advantage in cases with recombination near the mutation. An intragenic recombination rate of 5.5% was observed in embryos, predominantly in the hotspots (exons 45-55 and exons 3-9) of DMD deletion/duplication mutations. Prenatal diagnosis for 52 families and successful outcomes in all 85 healthy deliveries (live birth rate, 65.89%, 85/129) validated the accuracy and effectiveness of PGT-M. This study provides a highly effective PGT-M strategy (Strategy 5) for DMD/BMD by comparing five different strategies, with the diagnostic yield reaching 99.56%. The results underscore the significance of monitoring intragenic recombination in DMD, which is a frequent occurrence in DMD/BMD.