Breaking the mold: Overcoming the time constraints of molecular dynamics on general-purpose hardware.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Michael James, Delyan Z Kalchev, James H Laros, Edgar A Leon, Stan Moore, Tomas Oppelstrup, Scott Pakin, Danny Perez, Sivasankaran Rajamanickam, Kylee Santos, Robert Schreiber, Ilya Sharapov, Amirali Sharifian, Aidan Thompson

Ngôn ngữ: eng

Ký hiệu phân loại: 781.726 *Holy Week

Thông tin xuất bản: United States : The Journal of chemical physics , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 214635

The evolution of molecular dynamics (MD) simulations has been intimately linked to that of computing hardware. For decades following the creation of MD, simulations have improved with computing power along the three principal dimensions of accuracy, atom count (spatial scale), and duration (temporal scale). Since the mid-2000s, computer platforms have, however, failed to provide strong scaling for MD, as scale-out central processing unit (CPU) and graphics processing unit (GPU) platforms that provide substantial increases to spatial scale do not lead to proportional increases in temporal scale. Important scientific problems therefore remained inaccessible to direct simulation, prompting the development of increasingly sophisticated algorithms that present significant complexity, accuracy, and efficiency challenges. While bespoke MD-only hardware solutions have provided a path to longer timescales for specific physical systems, their impact on the broader community has been mitigated by their limited adaptability to new methods and potentials. In this work, we show that a novel computing architecture, the Cerebras wafer scale engine, completely alters the scaling path by delivering unprecedentedly high simulation rates up to 1.144 M steps/s for 200 000 atoms whose interactions are described by an embedded atom method potential. This enables direct simulations of the evolution of materials using general-purpose programmable hardware over millisecond timescales, dramatically increasing the space of direct MD simulations that can be carried out. In this paper, we provide an overview of advances in MD over the last 60 years and present our recent result in the context of historical MD performance trends.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH