Scattering-based structural inversion of soft materials via Kolmogorov-Arnold networks.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Jan-Michael Y Carrillo, Ming-Ching Chang, Wei-Ren Chen, Lijie Ding, Changwoo Do, Guan-Rong Huang, Lionel Porcar, Yuya Shinohara, Bobby G Sumpter, Chi-Huan Tung, Yangyang Wang

Ngôn ngữ: eng

Ký hiệu phân loại: 025.396 *Reclassification

Thông tin xuất bản: United States : The Journal of chemical physics , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 214637

Small-angle scattering techniques are indispensable tools for probing the structure of soft materials. However, traditional analytical models often face limitations in structural inversion for complex systems, primarily due to the absence of closed-form expressions of scattering functions. To address these challenges, we present a machine learning framework based on the Kolmogorov-Arnold Network (KAN) for directly extracting real-space structural information from scattering spectra in reciprocal space. This model-independent, data-driven approach provides a versatile solution for analyzing intricate configurations in soft matter. By applying the KAN to lyotropic lamellar phases and colloidal suspensions-two representative soft matter systems-we demonstrate its ability to accurately and efficiently resolve structural collectivity and complexity. Our findings highlight the transformative potential of machine learning in enhancing the quantitative analysis of soft materials, paving the way for robust structural inversion across diverse systems.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH