Cellulose biocomposites have emerged as attractive alternatives to fossil-based plastics because of their excellent renewability and biodegradability
however, their water resistance and mechanical properties remain challenging. Herein, a cellulose- containing bioplastic with high a reinforcement content, water stability, and toughness is reported. Lignin-containing cellulose nanofibers (LCNF) were prepared by pretreating eucalyptus wood powder with a deep eutectic solvent and high-pressure homogenization. Then, the pre-synthesized ε-caprolactone oligomers were in-situ polymerized in LCNF. The interaction of LCNF with ε-caprolactone-oligomers in the LCNF-crosslinked polycaprolactone (LCNF-PCL) bioplastic resulted in excellent mechanical properties (tensile strength: 76.59 MPa
toughness: 9.82 MJ m