PURPOSE: Breast cancer ranks as the most prevalent cancer in women, characterized by heightened fatty acid synthesis and glycolytic activity. Fatty acid synthase (FASN) is prominently expressed in breast cancer cells, regulating fatty acid synthesis, thereby enhancing tumor growth and migration, and leading to radioresistance. This study aims to investigate how FASN inhibition affects cell proliferation, migration, and radioresistance in breast cancer, as well as the mechanisms involved. MATERIALS AND METHODS: We used lentiviruses carrying sh RESULTS: FASN knockdown led to a decrease in the expressions of proteins related to fatty acid synthesis and glycolysis in both MCF-7-sh CONCLUSIONS: FASN knockdown disrupts fatty acid synthesis and glycolysis, inhibits cell proliferation and induces apoptosis. The increased radiosensitivity after FASN inhibition suggests that it could potentially complement radiotherapy in treating breast cancer.