Modeling Latent Neural Dynamics with Gaussian Process Switching Linear Dynamical Systems.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: David Anderson, Lea Duncker, Amber Hu, Scott Linderman, Aditya Nair, David Zoltowski

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : ArXiv , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 217761

Understanding how the collective activity of neural populations relates to computation and ultimately behavior is a key goal in neuroscience. To this end, statistical methods which describe high-dimensional neural time series in terms of low-dimensional latent dynamics have played a fundamental role in characterizing neural systems. Yet, what constitutes a successful method involves two opposing criteria: (1) methods should be expressive enough to capture complex nonlinear dynamics, and (2) they should maintain a notion of interpretability often only warranted by simpler linear models. In this paper, we develop an approach that balances these two objectives: the
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH