Antigen processing and presentation via major histocompatibility complex (MHC) molecules are central to immune surveillance. Yet, quantifying the dynamic activity of MHC class I and II antigen presentation remains a critical challenge, particularly in diseases like cancer, infection and autoimmunity where these pathways are often disrupted. Current methods fall short in providing precise, sample-specific insights into antigen presentation, limiting our understanding of immune evasion and therapeutic responses. Here, we present PSAA (PINN-empowered Systems Biology Analysis of Antigen Presentation Activity), which is designed to estimate sample-wise MHC class I and class II antigen presentation activity using bulk, single-cell, and spatially resolved transcriptomics or proteomics data. By reconstructing MHC pathways and employing pathway flux estimation, PSAA offers a detailed, stepwise quantification of MHC pathway activity, enabling predictions of gene-specific impacts and their downstream effects on immune interactions. Benchmarked across diverse omics datasets and experimental validations, PSAA demonstrates a robust prediction accuracy and utility across various disease contexts. In conclusion, PSAA and its downstream functions provide a comprehensive framework for analyzing the dynamics of MHC antigen presentation using omics data. By linking antigen presentation to immune cell activity and clinical outcomes, PSAA both elucidates key mechanisms driving disease progression and uncovers potential therapeutic targets.