CPI-Pred: A deep learning framework for predicting functional parameters of compound-protein interactions.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Rana Ahmed Barghout, Dhruv Garg, Radhakrishnan Mahadevan, Yun S Song, Jinghao Wu, Zhiqing Xu

Ngôn ngữ: eng

Ký hiệu phân loại: 271.6 *Passionists and Redemptorists

Thông tin xuất bản: United States : bioRxiv : the preprint server for biology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 218105

Recent advancements in deep learning have enabled functional annotation of genome sequences, facilitating the discovery of new enzymes and metabolites. However, accurately predicting compound-protein interactions (CPI) from sequences remains challenging due to the complexity of these interactions and the sparsity and heterogeneity of available data, which constrain the generalization of patterns across their solution space. In this work, we introduce CPI-Pred, a versatile deep learning model designed to predict compound-protein interaction function. CPI-Pred integrates compound representations derived from a novel message-passing neural network and enzyme representations generated by state-of-the-art protein language models, leveraging innovative sequence pooling and cross-attention mechanisms. To train and evaluate CPI-Pred, we compiled the largest dataset of enzyme kinetic parameters to date, encompassing four key metrics: the Michaelis-Menten constant (
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH