Inferring cell trajectories of spatial transcriptomics via optimal transport analysis.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Yaqi Deng, Ke Huang, Xin Jin, Zeyu Li, Pengfei Qin, Xunan Shen, Xiaoyu Wei, Liang Wu, Ping Xu, Xun Xu, Zhongfei Ye, Qichao Yu, Zhongyang Yuan, Hongmei Zhu, Xuanxuan Zou, Lulu Zuo

Ngôn ngữ: eng

Ký hiệu phân loại: 594.38 *Pulmonata

Thông tin xuất bản: United States : Cell systems , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 218261

The integration of cell transcriptomics and spatial position to organize differentiation trajectories remains a challenge. Here, we introduce SpaTrack, which leverages optimal transport to reconcile both gene expression and spatial position from spatial transcriptomics into the transition costs, thereby reconstructing cell differentiation. SpaTrack can construct detailed spatial trajectories that reflect the differentiation topology and trace cell dynamics across multiple samples over temporal intervals. To capture the dynamic drivers of differentiation, SpaTrack models cell fate as a function of expression profiles influenced by transcription factors over time. By applying SpaTrack, we successfully disentangle spatiotemporal trajectories of axolotl telencephalon regeneration and mouse midbrain development. Diverse malignant lineages expanding within a primary tumor are uncovered. One lineage, characterized by upregulated epithelial mesenchymal transition, implants at the metastatic site and subsequently colonizes to form a secondary tumor. Overall, SpaTrack efficiently advances trajectory inference from spatial transcriptomics, providing valuable insights into differentiation processes.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH