Neural tube defects (NTDs) represent a significant burden on global pediatric health, contributing to high rates of infant mortality and morbidity. Despite extensive research into their etiology, NTDs continue to pose challenges in diagnosis and treatment. MicroRNAs (miRNAs) have emerged as promising candidates for understanding the molecular mechanisms underlying NTDs and potentially offering avenues for improved diagnosis and therapeutic intervention. This review explores the multifaceted roles of miRNAs in the context of NTD pathogenesis. Studies have identified specific miRNA profiles associated with NTDs, providing insights into their potential as diagnostic biomarkers. Furthermore, dysregulation of certain miRNAs has been implicated in the pathophysiology of NTDs, highlighting their role as potential therapeutic targets. Additionally, animal models and deep sequencing approaches have expanded our understanding of the diverse miRNA expression patterns associated with NTDs. By unraveling the intricate molecular mechanisms underlying NTD pathogenesis, miRNAs offer promising avenues for early detection and intervention, ultimately improving outcomes for affected individuals.