Psychotic disorders, such as schizophrenia and bipolar disorder, pose significant diagnostic challenges with major implications on mental health. The measures of resting-state fMRI spatiotemporal complexity offer a powerful tool for identifying irregularities in brain activity. To capture global brain connectivity, we employed information-theoretic metrics, overcoming the limitations of pairwise correlation analysis approaches. This enables a more comprehensive exploration of higher-order interactions and multiscale intrinsic connectivity networks (ICNs) in the psychotic brain. In this study, we provide converging evidence suggesting that the psychotic brain exhibits states of randomness across both spatial and temporal dimensions. To further investigate these disruptions, we estimated brain network connectivity using redundancy and synergy measures, aiming to assess the integration and segregation of topological information in the psychotic brain. Our findings reveal a disruption in the balance between redundant and synergistic information, a phenomenon we term