Hexagons all the way down: grid cells as a conformal isometric map of space.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Kosio Beshkov, Marianne Fyhn, Erik Hermansen, Konstantin Holzhausen, Mikkel Elle Lepperød, Anders Malthe-Sørenssen, Markus Borud Pettersen, Vemund Sigmundson Schøyen

Ngôn ngữ: eng

Ký hiệu phân loại: 920.71 Men

Thông tin xuất bản: United States : PLoS computational biology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 218803

Grid cells in the entorhinal cortex are known for their hexagonal spatial activity patterns and are thought to provide a neural metric for space, and support path integration. In this study, we further investigate grid cells as a metric of space by optimising them for a conformal isometric (CI) map of space using a model based on a superposition of plane waves. By optimising the phases within a single grid cell module, we find that the module can form a CI of two-dimensional flat space with phases arranging into a regular hexagonal pattern, supporting an accurate spatial metric. Additionally, we find that experimentally recorded grid cells exhibit CI properties, with one example module showing a phase arrangement similar to the hexagonal pattern observed in our model. These findings provide computational and preliminary experimental support for grid cells as a CI-based spatial representation. We also examine other properties that emerge in CI-optimised modules, including consistent energy expenditure across space and the minimal cell count required to support unique representation of space and maximally topologically persistent toroidal population activity. Altogether, our results suggest that grid cells are well-suited to form a CI map, with several beneficial properties arising from this organisation.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH