The α-MG exhibits neuroprotective potential by reducing amyloid beta peptide-induced inflammation, oxidative stress, and tau aggregation in human neural stem cells.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Ming-Chang Chiang, Tairui Chiang, Christopher J B Nicol, Yu-Ping Yang, Chiahui Yen

Ngôn ngữ: eng

Ký hiệu phân loại: 155.9042 Environmental psychology

Thông tin xuất bản: Netherlands : Brain research , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 218967

Alzheimer's disease (AD) is the primary cause of dementia in older adults. Amyloid-beta (Aβ) and tau protein neurofibrillary tangles accumulate in the brain, leading to a progressive decline in memory, thinking, and behavior. Neuroinflammation and oxidative stress play a significant role in the development and progression of AD. Research has suggested that α-mangostin (α-MG), a compound found in mangosteen peels, may have anti-inflammatory, antioxidant, and neuroprotective properties, which could be beneficial in the context of AD. Further research is required to fully comprehend the therapeutic mechanisms of α-MG on AD and determine its potential as a treatment option. α-MG treatment significantly improves the viability of hNSCs exposed to Aβ and reduces caspase activity. Furthermore, this treatment is associated with a notable decrease in the expression of TNF-α and IL-1β. The treatment effectively restores alterations in the expression of IKK and NF-κB (p65) induced by Aβ, which are critical factors in the inflammatory response. Moreover, α-MG effectively reduces iNOS and COX-2 levels in Aβ-treated hNSCs, showcasing its potential therapeutic benefits. Treatment with α-MG protects hNSCs against Aβ-induced oxidative stress and effectively prevents the decrease in Nrf2 levels caused by Aβ. The treatment significantly enhances the activity and mRNA expression of Nrf2 downstream antioxidant target genes, including SOD-1, SOD-2, Gpx1, GSH, catalase, and HO-1, compared to Aβ-treated controls. α-MG significantly reduces tau and ubiquitin (Ub) aggregates, enhances proteasome activity, and increases the mRNA expression of HSF1, HSP27, HSP70, and HSP90 in Tau-GFP-expressed hNSCs. This study significantly improves our comprehension of the anti-inflammatory, antioxidative stress, and anti-aggregated effects of α-MG. These findings have potential therapeutic implications for developing treatments that could delay AD progression and promote healthy aging.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH