Temporal autocorrelation is predictive of age-An extensive MEG time-series analysis.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Elio Balestrieri, Udo Dannlowski, Jana Fehring, Niels K Focke, Joachim Gross, Christina Stier, Andreas Wollbrink

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : Proceedings of the National Academy of Sciences of the United States of America , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 220092

Understanding the evolving dynamics of the brain throughout life is pivotal for anticipating and evaluating individual health. While previous research has described age effects on spectral properties of neural signals, it remains unclear which ones are most indicative of age-related processes. This study addresses this gap by analyzing resting-state data obtained from magnetoencephalography (MEG) in 350 adults (18 to 88 y). We employed advanced time-series analysis at the brain region level and machine learning to predict age. While traditional spectral features achieved low to moderate accuracy, over a hundred time-series features proved superior. Notably, temporal autocorrelation (AC) emerged as the most robust predictor of age. Distinct patterns of AC within the visual and temporal cortex were most informative, offering a versatile measure of age-related signal changes for comprehensive health assessments based on brain activity.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH