Learning-based inference of longitudinal image changes: Applications in embryo development, wound healing, and aging brain.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Batuhan K Karaman, Heejong Kim, Mert R Sabuncu, Alan Q Wang, Qingyu Zhao

Ngôn ngữ: eng

Ký hiệu phân loại: 363.232 Patrol and surveillance

Thông tin xuất bản: United States : Proceedings of the National Academy of Sciences of the United States of America , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 220102

Longitudinal imaging data are routinely acquired for health studies and patient monitoring. A central goal in longitudinal studies is tracking relevant change over time. Traditional methods remove nuisance variation with custom pipelines to focus on significant changes. In this work, we present a machine learning-based method that automatically ignores irrelevant changes and extracts the time-varying signal of interest. Our method, called Learning-based Inference of Longitudinal imAge Changes (LILAC), performs a pairwise comparison of longitudinal images in order to make a temporal difference prediction. LILAC employs a convolutional Siamese architecture to extract feature pairs, followed by subtraction and a bias-free fully connected layer to learn meaningful temporal image differences. We first showcase LILAC's ability to capture key longitudinal changes by simply training it to predict the temporal ordering of images. In our experiments, temporal ordering accuracy exceeded 0.98, and predicted time differences were strongly correlated with actual changes in relevant variables (Pearson Correlation Coefficient
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH