SimMS: A GPU-Accelerated Cosine Similarity implementation for Tandem Mass Spectrometry.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Andreas Bender, Sona Chandra, Aurelien Duarte, Yoann Gloaguen, Vijay Ingalalli, Lila Khederlarian, Niklas Leuchtenmuller, Tornike Onoprishvili, Kamen Petrov, Jui-Hung Yuan

Ngôn ngữ: eng

Ký hiệu phân loại: 920.71 Men

Thông tin xuất bản: England : Bioinformatics (Oxford, England) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 220140

MOTIVATION: Untargeted metabolomics involves a large-scale comparison of the fragmentation pattern of a mass spectrum against a database containing known spectra. Given the number of comparisons involved, this step can be time-consuming. RESULTS: In this work, we present a GPU-accelerated cosine similarity implementation for Tandem Mass Spectrometry (MS), with an approximately 1000-fold speedup compared to the MatchMS reference implementation, without any loss of accuracy. This improvement enables repository-scale spectral library matching for compound identification without the need for large compute clusters. This impact extends to any spectral comparison-based methods such as molecular networking approaches and analogue search. AVAILABILITY: All code, results, and notebooks supporting are freely available under the MIT license at https://github.com/pangeAI/simms/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH