Sul-BertGRU: An Ensemble Deep Learning Method integrating Information Entropy-enhanced BERT and Directional Multi-GRU for S-sulfhydration Sites prediction.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Kuiyang Che, Shikai Guo, Hui Li, Zhaowei Liu, Qiao Ning, Xirun Wei

Ngôn ngữ: eng

Ký hiệu phân loại: 519.287 Expectation and prediction

Thông tin xuất bản: England : Bioinformatics (Oxford, England) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 220145

MOTIVATION: S-sulfhydration, a crucial post-translational protein modification, is pivotal in cellular recognition, signaling processes, and the development and progression of cardiovascular and neurological disorders, so identifying S-sulfhydration sites is crucial for studies in cell biology. Deep learning shows high efficiency and accuracy in identifying protein sites compared to traditional methods that often lack sensitivity and specificity in accurately locating nonsulfhydration sites. Therefore, we employ deep learning methods to tackle the challenge of pinpointing S-sulfhydration sites. RESULTS: In this work, we introduce a deep learning approach called Sul-BertGRU, designed specifically for predicting S-sulfhydration sites in proteins, that integrates multi-directional gated recurrent unit (GRU) and BERT. First, Sul-BertGRU proposes an information entropy-enhanced BERT (IE-BERT) to preprocess protein sequences and extract initial features. Subsequently, confidence learning is employed to eliminate potential S-sulfhydration samples from the nonsulfhydration samples and select reliable negative samples. Then, considering the directional nature of the modification process, protein sequences are categorized into left, right, and full sequences centred on cysteines. We build a multi-directional GRU to enhance the extraction of directional sequence features and model the details of the enzymatic reaction involved in S-sulfhydration. Ultimately, we apply a parallel multi-head self-attention mechanism alongside a convolutional neural network (CNN) to deeply analyze sequence features that might be missed at a local level. Sul-BertGRU achieves sensitivity, specificity, precision, accuracy, Matthews correlation coefficient, and area under the curve scores of 85.82%, 68.24%, 74.80%, 77.44%, 55.13%, and 77.03%, respectively. Sul-BertGRU demonstrates exceptional performance and proves to be a reliable method for predicting protein S-sulfhydration sites. AVAILABILITY AND IMPLEMENTATION: The source code and data are available at https://github.com/Severus0902/Sul-BertGRU/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH