Customization of Ethylene Glycol (EG)-Induced BmoR-Based Biosensor for the Directed Evolution of PET Degrading Enzymes.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Zhenya Chen, Yi-Xin Huo, Min Li, Qingsheng Qi, Tong Wu, Wuyuan Zhang

Ngôn ngữ: eng

Ký hiệu phân loại: 523.88 Kinds of stars characteristic of stages of stellar evolution

Thông tin xuất bản: Germany : Advanced science (Weinheim, Baden-Wurttemberg, Germany) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 2220

The immense volume of plastic waste poses continuous threats to the ecosystem and human health. Despite substantial efforts to enhance the catalytic activity, robustness, expression, and tolerance of plastic-degrading enzymes, the lack of high-throughput screening (HTS) tools hinders efficient enzyme engineering for industrial applications. Herein, we develop a novel fluorescence-based HTS tool for evolving polyethylene terephthalate (PET) degrading enzymes by constructing an engineered BmoR-based biosensor targeting the PET breakdown product, ethylene glycol (EG). The EG-responsive biosensors, with notably enhanced dynamic range and operation range, are customized by fluorescence-activated cell sorting (FACS)-assisted transcription factor engineering. The ingeniously designed SUMO-MHETase-FastPETase (SMF) chimera successfully addresses the functional soluble expression of MHETase in Escherichia coli and mitigates the inhibitory effect of mono-(2-hydroxyethyl) terephthalic acid (MHET) intermediate commonly observed with PETase alone. The obtained SM
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH