Heme, an iron containing organic ring, is required for a diverse range of biological processes across all forms of life. Although this nutrient is essential, its pro-inflammatory and cytotoxic properties can lead to cellular damage. Heme oxygenase 1 (HO-1) is an endoplasmic reticulum (ER)-anchored enzyme that degrades heme, releasing equimolar amounts of carbon monoxide (CO), biliverdin (BV), and iron. The induction of HO-1 by heme presents an interesting dichotomy in the cell: CO and BV possess anti-inflammatory and antioxidant properties while free iron can be detrimental as it can generate hydroxyl radicals through the Fenton reaction. The heme/HO-1 axis is tightly regulated, and can influence cell fate, local tissue environments, and disease outcomes during pathogen infection. In this review we explore the role of heme during macrophage polarization and its ability to act as an immune activator while also examining the contribution of HO-1 and heme during infections with intracellular and extracellular pathogens. We highlight work from the emerging field of nutritional immunity of heme and iron, and how the substrates and byproducts of heme metabolism via HO-1 can be beneficial to the host or the pathogen depending on the context.