Data-Driven Distributionally Robust Optimization for Long-Term Contract vs. Spot Allocation Decisions: Application to Electricity Markets

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Dimitri J Papageorgiou

Ngôn ngữ: eng

Ký hiệu phân loại: 003.78 Distributed-parameter systems

Thông tin xuất bản: 2025

Mô tả vật lý:

Bộ sưu tập: Báo, Tạp chí

ID: 223112

Comment: 23 pagesThere are numerous industrial settings in which a decision maker must decide whether to enter into long-term contracts to guarantee price (and hence cash flow) stability or to participate in more volatile spot markets. In this paper, we investigate a data-driven distributionally robust optimization (DRO) approach aimed at balancing this tradeoff. Unlike traditional risk-neutral stochastic optimization models that assume the underlying probability distribution generating the data is known, DRO models assume the distribution belongs to a family of possible distributions, thus providing a degree of immunization against unseen and potential worst-case outcomes. We compare and contrast the performance of a risk-neutral model, conditional value-at-risk formulation, and a Wasserstein distributionally robust model to demonstrate the potential benefits of a DRO approach for an ``elasticity-aware'' price-taking decision maker.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH